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The self-similar one-dimensional propagation of a strong shock wave in a medium 
with exponentially varying density and ray-tube area is studied, using the 
Eulerian approach of Sedov. Conservation integrals analogous to Sedov’s are 
obtained, with the expression for the Lagrangian variable. Calculated results are 
compared with the predictions of the CCW (Chisnell, Chester and Whitham) 
approximation. It was found that, in contrast to the implosion case, the propaga- 
tion parameter from the CCW approximation is in error by 15 yo or more. 

1. Introduction 
In  connection with the problem of predicting the behaviour of strong explosions 

in the atmosphere, the laws governing the propagation of strong shock waves in 
media with exponentially varying density are of interest (see Zel’dovich & Raizer 
1966, chapter XII, part 5). Plane rising and descending shocks have been investi- 
gated by Raizer (1963,1964), using a Lagrangian formulation. The purposes of the 
present paper are: (a) to extend the analysis of Raizer to include curved shocks 
with exponentially varying ray-tube area, (b )  to carry out the analysis in Sedov’s 
Eulerian formulation, with the conservation integrals analogous to Sedov’s 
exhibited, (c) to obtain numerical results over a range of the pertinent para- 
meters, and (d) to compare these results with those of the CCW approximation. 

The CCW approximation has been developed by Chisnell(l955,1957), Chester 
(1954, 1960) and Whitham (1958), with some contributions from others. This 
approximation has shown phenomenal accuracy with respect to the implosion 
problem. In the context of the present problem the approximation is inappro- 
priate for shock waves descending in an exponential atmosphere, and no com- 
parison is attempted. For rising shocks the approximation is appropriate, but the 
accuracy turns out not to be comparable with that for the implosion problem. 

Zel’dovich & Raizer (1966) suggest that the Lagrangian formulation is as 
convenient as the Eulerian or more so, for problems of this type. This writer 
disagrees. The basic differential equation to be solved numerically is in a non- 
analytic form in the Lagrangian formulation, but is in rational form in the Sedov 
formulation. The Lagrangian analogue of the basic equation (2.9) or (2.16) below 
involves terms with various irrational exponents. Although the question is 
primarily one of taste, the rational form is more convenient in numerical 
computation. 
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2. Basic theory 
The gas is assumed to be a calorically perfect gas with adiabatic exponent y .  

The gas is initially a t  rest at zero temperature and pressure under no body force, 
with a density distribution given by 

pm = poe@x. ( 2 . 1 )  

A = A,e”z. ( 2 . 2 )  

The motion is considered to be in a channel or tube of cross-sectional area given by 

The quantit’y p-’ is the characteristic scale length for the density distribution, 
corresponding to the scale height in an atmosphere. We take /3 to be positive, with 
the ’density increasing in the direction of increasing x. In an atmosphere, the 
corresponding x-axis is directed downward. 

The shock wave is located at x = X(t ) ,  and the motion of the shock is assumed 
to follow the law X = ap-lln It l ,  

where 01 is the propagation or similarity parameter of the problem, equal to the 
a of Raizer. The velocity of the shock is then 

(2 .3 )  

s = apt -1 .  (2 .4)  

6 = P ( x - X ) ;  (2 .5 )  

The similarity variable 6 is defined by 

it is negative behind the shock if 8 is positive, and positive behind the shock if 8 
is negative (with negative t ) .  The time t is positive and approaches + co if 8 is 
positive, and is negative and approaches 0 if 8 is negative. These assumptions 
are suggested by dimensional analysis, using the fact that /I-1 is the only dimen- 
sional parameter in the problem known in advance. 

The dependent variables, velocity u, density p and pressure p ,  are taken to 
have the self-similar forms 

u = aP-lt-lV([), (2.6a) 

(2.6b) 

p = p0O12p-2 ltl“-ZP([). ( 2 . 6 ~ )  

The approach is closely analogous to that of Sedov (1957, chapter IV). The one- 
dimensional equations for the conservation of mass, momentum, and entropy 
yield directly 

V ’ + ( V - l ) R - l R ’ =  -l--lc“, (2.7a) 

(“-1)V’+R-1P’ = aev, (2 .7b)  

( 2 . 7 ~ )  ( V -  1) ( P I P ’  - 7R-lR’) = 2a-l + (7 - l), 

where the primes indicate differentiation with respect to  6. 
Following Sedov, we introduce the variable z defined by 

a2 = a2/?-2t-2z([), z = yP/R.  
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The quantity a is the speed of sound, and the variable 2 is a reduced squared 
speed of sound. Elimination of 6, P and R from (2.7) then yields the basic 
differential equation 

a l n z  [2- (7- 1) kav] (1 - V)'+ (7- 1) V(1- V )  - [2- (7- 1) K ]  2 

V ( l -  V )  + ( K -  kaV)  2 dln(1-V) = -  

(2.9) 

(2.10) 

The parameter K is given by 
2 - a  

Y 
K = -  , c C = 2 - y K ,  

and may be used to replace a. The bracket multiplying z in the numerator of (2.9) 
may be written in the forms 

2 - ( 7 -  l ) K  = 2 + ( Y - 1 ) a = a + K *  (2.11) 
Y 

The remaining variables are obtainable from a solution x( V )  of (2.9) through (2.8) 
and quadratures of 

(2.12) 

(2.13) 

A direct but detailed manipulationof (2.9) with either (2.7) or (2.12) and (2.13) 
yields a first integral for the system 

(1 - V)2Hr-l)a R2-(y--l)ka za(l+lc) e [ 2 + ( y - l ) d  kE = const. (2.14) 

A method is to find the proper linear combination of the logarithmic derivatives of 
z ,  (1 - V )  and R with respect to 6 so that the right-hand side is independent of z 
and V ,  i.e. is a constant. A quadrature then yields the logarithm of (2.14). This 
integral is equivalent to that obtained by eliminating the Lagrangian variabb 
between the two general algebraic integrals of Sedov or the analogous two of 
Raizer (1964). Thus only (2.12) needs to be integrated, with (2.14) then serving to 
give R. 

A convenient transformation simplifies the basic equation (2.9) somewhat. 
This transformation is 

Z = ( l - V ) g ,  (2.15) 
and leads to the equation 

(2.16) 
d lnc  [2 - (7 - 1) ka V ]  (1 - V )  + 7 V - a( 1 + k V )  6 

V +  (K  - k a V )  5 dln(1- V )  = - 

in place of (2.9). The right-hand side of (2.12) simplifies somewhat, to give 

(2.17) 

An analogous transformation is available in Sedov's case. 
20-2 
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Of the several critical points of the basic equation (2.9) or (2.16), the most 
important are those that lie on the curve z = ( 1  - V ) z  or 5 = 1 - V .  These are 
located at V,,, ccr ,  with 

kaVzr+( l -K-ka)Kr+K = 0, (2.18a) 

ccr = 1 - V,r. (2.18 b )  

If k = 0, there is a single point of this type at  6cr = 1 - Vcr = (1 - K ) - ~ .  Such points 
are important because the problem is generally of the type termed by Zel’dovich 
& Raizer a self-similar problem of the second kind. In  problems of this type the 
propagation exponent or parameter (a  in this instance) must be determined by 
the requirement that the solution pass through a saddle-point on the curve 
z = (1  - V ) 2  or its equivalent. This curve is a characteristic of the original hyper- 
bolic equation; hence, the possibility of singularities arises. 

Boundary conditions in front of the shock are simply V, = 0, R, = 1, P, = 0, 
x ,  = 0 and c, = 0. The conditions immediately behind the shock are then 

n 

2Y 
5.9 = 3’ 

(2.19a) 

(2.19b) 

(2.19 c) 

Boundary conditions at an infinite distance behind the shock depend upon the 
particular problem. With descending shocks ( t  positive) with k < 0 , g  = - 00 and 
5 = 0 at V = --GO. With descending shocks with k > 0 the self-similar solution 
cannot extend to 6 = - co. With ascending shocks ( t  negative), k must be greater 
than some critical value (perhaps -y-l), and = +a, < = 0 a t  V = 0. In  any 
of these cases the solution must cross the line 5 = 1 - Vat a saddle-point, and this 
condition is the condition that determines the value of a. 

Self-similar problems of the second kind are thoroughly discussed in chapter 
XI1 of Zel’dovich & Raizer (1966)’ with several examples treated. In  all these 
problems insufficient information is available in advance to give the value of the 
characteristic exponent or parameter directly. In  all these problems an actual 
solution is initially not self-similar, and approaches a self-similar one as time 
increases. They are all governed by the fact that the boundary conditions dictate 
that the solution must cross the line 5 = 1 - V or equivalent, and that if the 
numerator of (2.17) or a corresponding equivalent is not zero at the crossing point, 
the point corresponds to a gasdynamic ‘limiting line ’ and the solution is physically 
unacceptable. Thence comes the saddle-point condition, which determines the 
similarity parameter. The line g = 1 - V corresponds to a characteristic of the 
original hyperbolic set of equations in each case. 

Certain anomalies in the behaviour of the integrals for the total momentum 
and energy in a ray tube are explained in chapter XII, part 4 of Zel’dovich & 
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Raizer (1966), in terms of the difference between an actual solution and its 
limiting self-similar form. This explanation applies in all essentials to the present 
problem. For example, the integral for the energy in the self-similar solution at 
any instant diverges. This divergence appears in the particular domain where an 
actual solution is very different from the self-similar one, so that in any particular 
actual case the energy is finite. The reader is referred to Zel’dovich & Raizer for an 
extensive discussion of this and related points. 

To complete the presentation in close analogy with Sedov’s, we next present 
general conservation integrals, together with certain solutions corresponding to 
constant momentum or energy in a ray tube. These solutions are not, in general, 
physically acceptable, as they usually violate the saddle-point condition. They 
are important primarily in serving as limiting or bounding solutions. 

3. Conservation integrals and special solutions 
The total mass in a ray tube above a certain point x is given by 

n 

where r ([ )  is a reduced Lagrangian variable defined by 

7 = 1 R ekt a[. 
--m 

Integrals without upper limit are indefinite integrals equal to zero at  the lower 
limit. The variable 7 defined for the case k = 0 is used as the independent variable 
by Raizer (1963,1964), with a differential equation for P(q) (in terms of a variable 
p ,  orf )  in place of our equation (2.9) or (3.16). 

The quantity A is a physical Lagrangian variable, and the quantity p p - y  must 
be a function of A? alone. Introducing the forms of (2.6) and requiring the 
function to be consistent in powers of It] leads directly to 

(3.3) ~ { ( Y - U  a+Z)/(l+k)a PR-Y = const. 

This result is directly analogous to Sedov’s entropy integral, and was given by 
Raizer for k = 0. 

Conservation of mass requires that the time derivative of A with 6 held fixed be 
balanced by the mass flow across the plane [ = constant. This principle leads to 
the relation ( l + k ) q  = R(1- Y)ek5, (3.4) 

the analogue of Sedov’s mass conservation integral, also given by Raizer for 
k = 0. Elimination of q between (3.3) and (3.4) gives the integral (2.14) above. 

For momentum conservation we introduce the integral 

4 = 1 p u ~  ax = A , ~ ,  q 3 - 2  1 t p + k )  t-11, (3.5) 
-03 

where I ( g )  is defined 
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The total momentum above point $ is equal to 9 ( c ,  t ) .  Conservation of momentum, 
applied to a calculation of d 9 / d t  with 5 fixed, leads to 

[ ( l + k ) a - l ] l + a e k ~ [ R V ( V - l ) + P ] ~ - ~ - a k ~  -03 PekEdc = 0. (3.7) 

The time derivative of 9 here is equated to the flux of momentum past the point $ 
plus the pressure force exerted on the ray tube. The relation (3.7) may also be 
obtained from the equations of motion. The case 

is termed the constant-momentum case, as it corresponds to d 9 / d t  = 0. If k = 0 
a specific result is obtained, 

with a: = 1. The solution for which this constant is zero is 

P + R V ( V - l )  = const., (3.9) 

(3.10) 

and is of particular interest because it fits the shock conditions (2.19). 
For energy conservation we introduce the integral 

where E($) is defined 

(3.12) 

The total energy in a ray tube above point 6 is equal to &($, t ) .  Conservation of 
energy, applied to a calculation of dbldt with 6 fixed, leads to 

[ ( l + k ) a - 2 ] l + a e r [ ( y - l + ~ )  P RV2 ( V - l ) + P V ] I  = 0 .  (3.13) 
-a 

This relation may also be derived from the equations of motion. The case 

2 
1 + k  

a=- 

is termed the constant-energy case, in which we obtain 

The solution for which the constant is zero is 

(3.14) 

(3.15) 

(3.16) 

and again fits the shock conditions (2.19). This solution is the direct analogue of 
Sedov’s noted solution for the point explosion. 
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A special type of solution appears which does not emerge from one of the con- 
servation principles. This solution has 5 = const, and this constant is chosen to 
fit (2.19). The solution is thus 

(3.17) 

One solution of this type, for which the author is indebted to the referee, is 

Y-3 k=- Y + l  2 
= const, a = - V = -  

Y + l  y -  1’ y-3’ 
(3.18) 

with R and P given by 

R = RSexp{(y+1)t/(y-1)), P =  P,exp{(y+1)tl(y-3)). (3.19) 

If the variable T‘ is not constant, examination of (2.16) shows that (7- 1) k 
must be zero. Two cases thus appear for this special solution. The first is 
characterized by 

k = 0 ,  y = 2 ,  a = # ,  C = ”  3’ (3.20) 

This case was found by Raizer (1963), and is a solution corresponding to a 
descending shock. The other case is characterized by 

k=-*, y = 1, a = 2, c =  1, (3.21) 

with the relation (3.8) valid. It may be considered a limiting case of a descending 
shock, in the limit y -+ 1. 

4. The limiting case y + 1 
The limiting case y -+ 1 is singular whenever a shock is present. In  the limit 

V ,  = 1, which means that u = immediately behind the shock. The density 
function R,+m behind the shock, and the behaviour of R near the shock 
approaches that of a delta function. Farther behind the shock the function R 
drops to values that approach zero in the limit. The total moving mass is con- 
centrated in an infinitesimal ‘shock’ layer immediately behind the shock. 

The region behind this shock layer is a constant pressure region, characterized 
by a single pressurep(t). This back pressure may be zero. In  this region of negligible 
density our equations may define a definite velocity, as in the solution of (3.21). 
Behind the shock layer this solution is meaningless. In  the full limit y -+ 1 the 
solution may cross the line 5 = 1 - V at an ordinary point. The anomaly at  the 
crossing point is spurious, because it is for a flow with zero density. 

The solution in this limiting case may be obtained directly from the dynamics 
of the shock layer. Such a theory is a simple case of the Newtonian theory of 
hypersonic flow, and the limiting approximation is sometimes referred to as the 
snowplow approximation. In  our problem, we must make a sharp distinction 
between the cases k > - 1 and k < - 1. Here we assume k > - 1 and simply note 
that, if k < - 1, the roles of rising and descending shocks are reversed. The case 
k = 1 is a simple special case, but one for which the self-similar forms are not of 
the type considered in this paper. 
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For descending shocks we assume that the entire mass between the shock and 
x = -m is concentrated in the shock layer. The momentum of the layer is 
9 = JZX, and conservation of momentum gives 

d 
-(AX) =PA.  
at 

The mass A is given by (3.1) with 7 = (1 + k)-l, and k and A are given by (2.2) 
to (2.4), with x = X .  The pressure ps  behind the shock is simply pa, X 2 .  For self- 
similarity we must require that p/ps be a constant. The relation (4.1) leads to a 
condition giving the parameter a, 

Note that with p/ps = 0, we have the constant-momentum case of (3.8). With 
p/ps = +, we have the constant-energy case of (3.14). This limiting behaviour 
corresponds with that of Sedov's solutions in the limit y 3 1. 

In  the case of an ascending shock we must assume that a fixed mass .Ao has 
been concentrated in the shock layer, and that the total mass A above the shock 
is negligible compared with do. The relation (4.1) holds with the sign on p 
changed. We obtain 

p = A-lAo 

= A&40ap-l Itl-2-k". (4.3) 

pref = do A-'/3X2. (4.4) 

This pressure is large compared with ps, but may be compared with a reference 
pressure given by 

Combining (4.3) and (4.4) gives 

and shows that in the limit p -+ 0 with k kept finite, the parameter a -+ 00. 

5. The CCW approximation 
The method given by Whitham (1958) for establishing the CCW approxi- 

mation is to write the characteristic equation for the characteristics moving in 
the same direction as the shock and to apply this equation in terms of the variables 
evaluated immediately behind the shock. In  our case with a rising shock, the 
characteristic equation is 

pua2 d A  
u - a  A 

dp-pudu+-- = 0. 

We express p,, us, p,, u," = yps/p, and A, = A ( X )  as functions of time, using (2.2) 
to (2.6) and (2.19), keeping in mind that u and t are negative. These quantities, are 
then substituted into (5.1). The result is an expression for a(k,  y) ,  which we give 
in the form 
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Note that a-l is linear in k. We may write 

2a-1= K o + K , k ,  (5.3) 

where KO and K ,  depend only upon y. 
The quantity K ,  is the same as K ,  in equation (1 1) of Whitham (1958), while 

+KO is the same as /? in equation (33) of the same paper. In  the limit k -+ co, 3 + 0, 
the quantity $Kl is to be interpreted as (ak)-l, and it is this quantity in this limit 
that agrees so phenomenally with exact calculations for the implosion problem. 
Comparisons with exact calculations for a(k,  y )  in our problem are given below. 

6. Calculations for rising shocks 
Integrations of the differential equation (2.16) subject to the boundary condi- 

tions (2.19) and the saddle-point condition were carried out for a number of 
choices of the parameters by V. Sagherian of the Stanford Research Institute. 
For rising shocks these calculations included a number of values of k at y = 1.4, 
a number of values of y at k = 0, and a smaller number of values of y at k = & 0.1. 
The quantity a > 2 in these cases, and K is negative. 

The method of calculation is about the same for all problems of the second 
kind. First, the local solutions in the neighbourhoods of the saddle points and the 
shock point (2.19) are studied. This study gives information on the local slopes 
of the solution curve at these points on the ( V ,  [)-plane. For a number of choices 
of a, the solution is started on the correct branch leaving the appropriate saddle- 
point and is continued to V,. The process is repeated for values of a between those 
bracketing the correct value of 6, until the error in is small. An accurate value 
of a is then obtained by interpolation. 

We present here the values of a obtained, in the form 

2 a 4 =  K(k ,  y )  = K,(y)+K,(y)k+O(k2)  (6.1) 

in analogy with (5.3). The results for y = 1.4 are presented in table 1, with the 
corresponding results according to the CCW approximation. 

For varying y we choose integral values of the quantity 2/(y - l), and present 
KO and Kl as defined by (6.1) in table 2, with the corresponding values according 
to the CCW approximation. 

Raizer (1964) reported a = 4.90 and 6-48 for the cases y = + and g with k = 0,  
in accord with our values of KO in table 2 .  He also reported that at  t = 0, at the 
moment the shock reaches x: = --a, each particle in the flow field has moved 
upward a distance Sp-l, with S = 4.57 for y = Q and 6 = 7.50 for y = g. We have 
not made the corresponding calculation in our cases. 

Curves for the parameters are presented in an accompanying paper (Hayes 
1968, figures 1 and 2). It may be observed either from the tables here or the 
figures in the other paper that the CCW approximation is in error by some 15 % or 
20 yo for KO. For K ,  the error is less, and is zero for a value of y of about 1-21. 
With y = 1.4 the error in K is large for negative k (as might be expected), and 
drops to about 7 yo at k = 1. The phenomenal agreement found in the implosion 
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case is not found here, but there is a strong indication that the agreement should 
again be excellent in the limit k -+ 00, with an exponentially varying ray-tube 
area and constant density in the undisturbed flow. 

Sakurai (1960) has considered a one-dimensional flow without area change in 
which the shock approaches a distinct edge, with the undisturbed density a power 
of the distance from the edge. Calculations were carried out for the power equal 

k 
- 0.5 
- 0.4 
- 0.3 
- 0.2 
- 0.1 

0 
0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 

K 
0.1569 
0.1998 
0.2414 
0.2838 
0.3257 
0.3673 
0.4086 
0.4496 
0.4907 
0.5314 
0.6126 
0.6933 
0.7726 

K C a W  

0.2335 
0.2729 
0.3123 
0.3517 
0.3911 
0.4305 
0.4699 
0.5093 
0-5487 
0.5881 
0-6670 
0.7458 
0.8246 

TABLE 1. Parameter K for rising shocks, with y = 1.4 

2 __ 
Y Y - 1  
2 2 

3 3 
2 4 

5 
3 6 
7 7 

6 

3 

7 
6 
4 

9 

6 
4 
11 
7 

- 
- 
- 

- 
- 

8 
9 

fi 10 

- 

KO 
0.438 
0.408 
0.386 
0.367 
0.352 
0-339 
0.328 
0.318 
0.309 

KO* cow 
0.500 
0.472 
0.449 
0.430 
0.414 
0-400 
0.387 
0.376 
0.366 

KT 
- 
- 

0.447 
0.414 
0.388 

0.352 

0.324 

- 

- 

Kl, cow 
0.500 
0.45 1 
0.418 
0.394 
0.377 
0-360 
0.347 
0.336 
0.326 

* K ,  was only computed for five values of y. 

TABLE 2. Parameters for rising shocks, with k = 0 

to 4, 1 and 2, and for y = +, $ and%. Values of KO were obtained which lie between 
those of our calculations for k = 0 and the corresponding CCW values. Our case 
k = 0 corresponds to the limiting case of Sakurai’s in which the power approaches 
infinity. Sakurai’s and related results are discussed by Zel’dovich & Raizer (1966). 

The CCW approximation would appear to be generally better for decreasing 
area than for decreasing density, and it is not clear why this should be so. That 
the approximation should be better with power-law profiles than with exponential 
profiles is not unexpected. 
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7. Calculations for descending shocks 
Our calculations for descending shocks were carried out only for k = 0, with a 

number of choices of y. Here a < 2 and K > 0 in the cases considered. In the 
calculation, the shock point and the saddle point are considerably farther apart 
on the ( V ,  g)-plane than in the case of a rising shock, with the result that the 
calculated values of a are more sensitive to the accuracy of the calculation, Our 
results are in table 3. 

The result for y = 2 is Raizer’s exact solution corresponding to (3.18) above. 
Raizer (1963) also reported the value a = 1.345 for y = 2, in slight disagreement 
with our value 1.338. 

2 - 
Y Y-1 
2 2 
a 3 
1 4 
6 5 
3 6 
7 7 
4 8 
9 9 

6 - 

7 

4 

0 

6 

__ It 

- 
- 

- 
- 

U 

1.500 
1.450 
1.417 
1.392 
1.369 
1.351 
1.338 
1-324 

TABLE 3. Parameter u for descending shocks, with k = 0 .  

This work was performed with the support of the U.S. Office of Naval Research, 
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